? 不可不知的数据科学入门数学指南_CQITer_重庆IT人之家 yabo10.com亚博体育,亚博娱乐在线网站,亚博国际娱乐7171 ?

不可不知的数据科学入门数学指南

数学就像一个章鱼:它的「触手」可以触及到几乎所有学科。虽然有些学科只是沾了点数学的边,但有些学科则被数学的「触手」紧紧缠住。数据科学就属于后者。如果你想从事数据科学工作,你就必须解决数学问题。如果你已经获得了数学学位或其它强调数学技能的学位,你可能想知道你学到的这些知识是否都是必要的。而如果你没有相关背景,你可能想知道:从事数据科学工作究竟需要多少数学知识?在本文中,我们将探讨数据科学意味着什么,并讨论我们到底需要多少数学知识。让我们从「数据科学」的实际含义开始讲起。

数据科学

对于数据科学的理解,是「仁者见仁,智者见智」的事情!在 Dataquest,我们将数据科学定义为:使用数据和高级统计学进行预测的学科。这是一门专业学科,重点关注理解有时有些混乱和不一致的数据(尽管数据科学家解决的问题因人而异)。统计学是我们在该定义中提到的唯一一门数学学科,但数据科学也经常涉及数学中的其他领域。学习统计学是一个很好的开始,但数据科学也使用算法进行预测。这些算法被称为机器学习算法,数量达数百种。深入探讨每种算法需要多少数学知识不属于本文的范围,本文将讨论以下常用算法所需的数学知识:

朴素贝叶斯

线性回归

Logistic 回归

K-Means 聚类

决策树

现在让我们来看看每种算法实际需要哪些数学知识!

朴素贝叶斯分类器

定义:朴素贝叶斯分类器是一系列基于同一个原则的算法,即某一特定特征值独立于任何其它特征值。朴素贝叶斯让我们可以根据我们所知道的相关事件的条件预测事件发生的概率。该名称源于贝叶斯定理,数学公式如下:

不可不知的数据科学入门数学指南

其中有事件 A 和事件 B,且 P(B) 不等于 0。这看起来很复杂,但我们可以把它拆解为三部分:

P(A|B) 是一个条件概率。即在事件 B 发生的条件下事件 A 发生的概率。

P(B|A) 也是一个条件概率。即在事件 A 发生的条件下事件 B 发生的概率。

P(A) 和 P(B) 是事件 A 和事件 B 分别发生的概率,其中两者相互独立。

所需数学知识:如果你想了解朴素贝叶斯分类器算法的基本原理以及贝叶斯定理的所有用法,一门概率论课程就足够了。

线性回归

定义:线性回归是最基本的回归类型。它帮助我们理解两个连续变量间的关系。简单的线性回归就是获取一组数据点并绘制可用于预测未来的趋势线。线性回归是参数化机器学习的一个例子。在参数化机器学习中,训练过程使机器学习算法变成一个数学函数,能拟合在训练集中发现的模式。然后可以使用该数学函数来预测未来的结果。在机器学习中,数学函数被称为模型。在线性回归的情况下,模型可以表示为:

不可不知的数据科学入门数学指南

其中 a_1, a_2, …,a_n 表示数据集的特定参数值,x_1, x_2, …, x_n 表示我们选择在最终的模型中使用的特征列,y 表示目标列。线性回归的目标是找到能描述特征列和目标列之间关系的最佳参数值。换句话说,就是找到最能最佳拟合数据的直线,以便根据线的趋势来预测未来结果。

为了找到线性回归模型的最佳参数,我们要最小化模型的残差平方和。残差通常也被称为误差,用来描述预测值和真实值之间的差异。残差平方和的公式可以表示为:

不可不知的数据科学入门数学指南

其中 y ^ 是目标列的预测值,y 是真实值。

所需数学知识:如果你只想简单了解一下线性回归,学习一门基础统计学的课程就可以了。如果你想对概念有深入的理解,你可能就需要知道如何推导出残差平方和的公式,这在大多数高级统计学课程中都有介绍。

逻辑回归

定义:Logistic 回归重点关注在因变量取二值(即只有两个值,0 和 1 表示输出结果)的情况下估算发生事件的概率。与线性回归一样,Logistic 回归是参数化机器学习的一个例子。因此,这些机器学习算法的训练结果是得到一个能够最好地近似训练集中模式的数学函数。区别在于,线性回归模型输出的是实数,而 Logistic 回归模型输出的是概率值。

相关推荐
新闻聚焦
猜你喜欢
热门推荐
  • 微软AI面试题有多难?这里有一份样卷

      究竟什么样的AI人才能被微软这样的巨头聘用呢?今天,文摘君就淘来了几道微软AI 面试题,同时给出了最基本的解答......

    06-25????来源:澎湃新闻网

    分享
  • 全球最聪明的大脑怎么看AI?他们预测了

      2017年AI领域取得了诸多成果。2018年AI又将何去何从?以下是来自世界顶级研究人员和行业领军人物对2018年AI领域发展作......

    02-20????来源:虎嗅网

    分享
  • 2017JavaScript框架战报 - React分战场

      我们来看看与React有关的软件包的生态系统。当Facebook构建React时,就有许多来自开源社区的第三方软件包。为提供完......

    02-27????来源:湖北新闻网

    分享
  • 小白学数据:教你用Python实现简单监督学

      监督学习作为运用最广泛的机器学习方法,一直以来都是从数据挖掘信息的重要手段。即便是在无监督学习兴起的近......

    03-05????来源:今日头条

    分享
  • 现代编程语言Swift、Kotlin等十大有趣功能

      最近学习了一些现代编程语言,比如Reason,Swift,Kotlin和Dart。这些编程语言提供了许多新功能,本文主要分享了我认......

    04-29????来源:祁东新闻网

    分享
  • 领域场景分析的6W模型

      组成场景的要素常常被称之为6W模型,即描写场景的过程必须包含Who,What,Why,Where,When与hoW这六个要素。......

    04-30????来源:砍柴网

    分享
  • 开源应用服务器WildFly 12发新季度交付模式

      WildFly 12 Final版本现在已经可以下载了,WildFly是一款灵活的开源应用服务器,支持开发人员构建轻量级应用程序。支持......

    05-10????来源:青岛新闻网

    分享
  • 基于Spring Cloud的微服务落地

      微服务架构模式的核心在于如何识别服务的边界,设计出合理的微服务。但如果要将微服务架构运用到生产项目上,......

    06-04????来源:广西新闻网

    分享
  • 为什么阿里工程师纷纷在内网晒代码?

      前阵子,在阿里一个小黑屋里,5名对代码有着极致追求的工程师参与阿里代码领域最高荣誉“多隆奖”的最终角逐。......

    06-08????来源:四川新闻网

    分享
  • 超级大汇总!200多个最好的机器学习、

      我把这篇文章分为了四个部分:机器学习,自然语言处理,python和数学。在每个部分中我都列举了一些主题,但是因......

    09-25????来源:洛阳新闻网

    分享
返回列表
Ctrl+D?将本页面保存为书签,全面了解最新资讯,方便快捷。