? DeepMind巨额亏损的背后,今天的AI是否选对了方向?_CQITer_重庆IT人之家 yabo10.com亚博体育,亚博娱乐在线网站,亚博国际娱乐7171 ?

DeepMind巨额亏损的背后,今天的AI是否选对了方向?

DeepMind 可能是全世界最大的专注于科研的 AI 公司,但它正在遭受巨额亏损,过去三年的亏损超过 10 亿美元,而且未来 12 个月还有超过 10 亿美元的债务需要偿还。

DeepMind巨额亏损的背后,今天的AI是否选对了方向?

这是否意味着 AI 正在分崩离析呢?

事实并非如此。做研究需要花钱,DeepMind 每年都在做更多的研究。这家公司的确花了很多钱,而且可能比以往任何 AI 研究公司都要多。但与科学界那些大型项目相比,DeepMind 花的钱还远远算不上史无前例。例如,大型强子对撞机每年可能要花费 10 亿美元,而发现希格斯玻色子的花费估计超过了 100 亿美元。当然,实现电影里那种真正的机器智能(即 AGI)要花费的还远不止这些。

尽管如此,DeepMind 的巨额亏损(从 2016 的 1.54 亿美元到 2017 年的 3.41 亿美元再到 2018 年的 5.72 亿美元)还是值得我们反思。在我看来,这其中有三个核心问题:

DeepMind 是否选对了方向?

从谷歌母公司 Alphabet 的角度来看,这种规模的投资是否合理?

这种亏损会对 AI 的整体发展产生什么影响?

对于第一个问题,我们有理由持怀疑态度。DeepMind 将大部分人力和财力投入到了深度强化学习的技术研究中。该技术结合了深度学习和强化学习,前者主要用于模式识别,后者则是以奖励信号(如游戏中的得分或胜负)为基础的学习。

深度强化学习技术是 DeepMind 在 2013 年提出的,他们在一篇名为《Playing Atari wyabo10.com亚博体育h Deep Reinforcement Learning》的论文中展示了单个神经网络系统如何玩转各种雅达利游戏,如打砖块(Breakout)、太空侵略者(Space Invaders)等,而且证明神经网络的表现优于人类。

这篇论文称得上一篇工程杰作,可能也是 2014 年谷歌收购 DeepMind 的关键催化剂。这项技术的持续发展推动了 DeepMind 在围棋和《星际争霸》游戏对抗中取得成功。

但问题是,这项技术的适用范围非常狭窄。以打砖块游戏为例,轻微的改变(如将拍子往上移动几个像素)就会导致网络性能大幅下降。DeepMind 的《星际争霸》AI 也非常受限,只有在单一地图上选择某种角色才会达到超越人类的水平,但随着地图和角色数目的增加,该 AI 的性能也大幅降低。要转换角色,你需要从头训练整个系统。

从某些方面来说,深度强化学习是一种涡轮增压式的记忆方式:使用该技术的系统能够完成令人惊叹的壮举,但它们对自己在做什么知之甚少。因此,现有的系统缺乏灵活性,也就无法在现实世界发生变化时做出补充(DeepMind 提前 48 小时预测急性肾损伤的 AI 系统也受到了这种质疑)。

深度强化学习还需要大量数据,如 AlphaGo 的训练需要完成数百万次自我博弈,这一训练量远远大于人类成长为世界级棋手所需的训练量。这就需要谷歌级别的算力,也就意味着在现实世界中,多数用户仅仅因为算力开销就会望而却步。据估算,AlphaGo 的训练花费了 3500 万美元,这相当于 12760 个人脑三天三夜不眠不休所消耗的能量。

但这还只是经济方面的考量。正如我和 Ernest Davis 在即将出版的新书《Rebooting AI》中所谈到的,真正的问题在于可靠性。迄今为止,深度强化学习还只能在控制良好、很少出现意外的环境中进行。围棋就是一个完美的环境,其规则和棋盘两千年来都未发生变化,但在现实世界的许多场景中,你不会想要依赖这项技术。

商业变现能力有限

出现上述问题的部分原因在于,只有极少数的现实世界问题像 DeepMind 所研究的游戏那样受到各种限制,DeepMind 还未发现深度强化学习的任何大规模商业应用场景。Alphabet 对 DeepMind 的投资已经达到了 20 亿美元左右(包括 2014 年收购时所花费的 6.5 亿美元)。相比之下,DeepMind 创造的直接经济回报却少得可怜,2018 年只有 1.25 亿美元,其中包含利用强化学习帮助谷歌降低服务器冷却开销所缩减的费用。

DeepMind 用来解决围棋问题的那一套技术可能无法用来解决现实世界中需要用 AI 来解决的问题,如癌症治疗和清洁能源。对此,IBM 已经在 Watson 项目中经历了惨痛的教训。Watson 在某些情况下表现良好,但在其他情况下并不好用,出现了心脏病漏诊等问题,而一年级的医学生都不会犯这种错误。

当然,这也许只是时间问题。DeepMind 至少从 2013 年就开始了深度强化学习的研究,也许他们需要更长时间,很少有科学进展能够在一夜之间实现商业化。DeepMind 或其他公司可能会通过结合其他技术开发出更深层次、更稳定的深度强化学习系统,也可能不会。

相关推荐
新闻聚焦
猜你喜欢
热门推荐
  • 微软AI面试题有多难?这里有一份样卷

      究竟什么样的AI人才能被微软这样的巨头聘用呢?今天,文摘君就淘来了几道微软AI 面试题,同时给出了最基本的解答......

    06-25????来源:澎湃新闻网

    分享
  • 全球最聪明的大脑怎么看AI?他们预测了

      2017年AI领域取得了诸多成果。2018年AI又将何去何从?以下是来自世界顶级研究人员和行业领军人物对2018年AI领域发展作......

    02-20????来源:虎嗅网

    分享
  • 2017JavaScript框架战报 - React分战场

      我们来看看与React有关的软件包的生态系统。当Facebook构建React时,就有许多来自开源社区的第三方软件包。为提供完......

    02-27????来源:湖北新闻网

    分享
  • 小白学数据:教你用Python实现简单监督学

      监督学习作为运用最广泛的机器学习方法,一直以来都是从数据挖掘信息的重要手段。即便是在无监督学习兴起的近......

    03-05????来源:今日头条

    分享
  • 现代编程语言Swift、Kotlin等十大有趣功能

      最近学习了一些现代编程语言,比如Reason,Swift,Kotlin和Dart。这些编程语言提供了许多新功能,本文主要分享了我认......

    04-29????来源:祁东新闻网

    分享
  • 领域场景分析的6W模型

      组成场景的要素常常被称之为6W模型,即描写场景的过程必须包含Who,What,Why,Where,When与hoW这六个要素。......

    04-30????来源:砍柴网

    分享
  • 开源应用服务器WildFly 12发新季度交付模式

      WildFly 12 Final版本现在已经可以下载了,WildFly是一款灵活的开源应用服务器,支持开发人员构建轻量级应用程序。支持......

    05-10????来源:青岛新闻网

    分享
  • 基于Spring Cloud的微服务落地

      微服务架构模式的核心在于如何识别服务的边界,设计出合理的微服务。但如果要将微服务架构运用到生产项目上,......

    06-04????来源:广西新闻网

    分享
  • 为什么阿里工程师纷纷在内网晒代码?

      前阵子,在阿里一个小黑屋里,5名对代码有着极致追求的工程师参与阿里代码领域最高荣誉“多隆奖”的最终角逐。......

    06-08????来源:四川新闻网

    分享
  • 超级大汇总!200多个最好的机器学习、

      我把这篇文章分为了四个部分:机器学习,自然语言处理,python和数学。在每个部分中我都列举了一些主题,但是因......

    09-25????来源:洛阳新闻网

    分享
返回列表
Ctrl+D?将本页面保存为书签,全面了解最新资讯,方便快捷。